Monday, February 1, 2021

254. Factor Combinations

 Numbers can be regarded as product of its factors. For example,

8 = 2 x 2 x 2;
  = 2 x 4.

Write a function that takes an integer n and return all possible combinations of its factors.

Note:

  1. You may assume that n is always positive.
  2. Factors should be greater than 1 and less than n.

Example 1:

Input: 1
Output: []

Example 2:

Input: 37
Output:[]

Example 3:

Input: 12
Output:
[
  [2, 6],
  [2, 2, 3],
  [3, 4]
]

Example 4:

Input: 32
Output:
[
  [2, 16],
  [2, 2, 8],
  [2, 2, 2, 4],
  [2, 2, 2, 2, 2],
  [2, 4, 4],
  [4, 8]
]


My answer: didn't figure out solution, only think of sqrt() to restrict choices. Please take a look at the key point below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
    public List<List<Integer>> getFactors(int n) {
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        helper(2, n , new ArrayList<Integer>(), result);
        return result;
    }
    
    private void helper(int start, int n, List<Integer> singleResult, List<List<Integer>> result) {
        // we use i * i < n to make sure the 1st factor of n is in ascending order
        // and it can avoid duplicate factor
        // because the larger factor corresponding the smaller factor won't be picked
        for (int i = start; i * i <= n; i ++) {
            if (n % i == 0) {// find i as valid factor
                singleResult.add(i);
                singleResult.add(n/i);
                result.add(new ArrayList<Integer>(singleResult));
                // backtrack singleResult as we are using i as starting factor
                singleResult.remove(singleResult.size() - 1);
                // continue to get factors for n/i
                // KEY POINT: new start is i
                // because factor smaller than i must have already shown up in
                // previous recursion, no need to go over again
                helper(i, n/i, singleResult, result);
                // backtrack singleResult as we keep using i as starting factor
                singleResult.remove(singleResult.size() - 1);
            }
        }
    }
}


No comments:

Post a Comment