Given an array nums
and an integer target
.
Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).
Example 2:
Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.
Example 3:
Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10 Output: 3
Example 4:
Input: nums = [0,0,0], target = 0 Output: 3
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
0 <= target <= 10^6
Accepted Answer:
class Solution { public int maxNonOverlapping(int[] nums, int target) { if (nums == null || nums.length == 0) { return 0; } if (nums.length == 1) { return nums[0] == target ? 1: 0; } // to check if subarray sum is Target // core logic is F(i) - F(y) == Target(i is current index, and y is index // somewhere before it) // which means there exists 1 path from y to x, // F(i) is sum from index -1 to i, F(-1) = 0 // // F(i-1) = F(i-2) + V(i-1) Set<Integer> set = new HashSet<>(); set.add(0); int res = 0, cur = 0; for (int i = 0; i < nums.length; i++) { cur += nums[i]; if (set.contains(cur - target)) { res++; cur = 0; set = new HashSet<>(); set.add(0); } else { set.add(cur); } } return res; }
No comments:
Post a Comment